Как продлить жизнь жёстким дискам (часть 3)

Автор Ruterk, 08 ноября 2008, 17:13:33

« назад - далее »

0 Пользователи и 1 гость просматривают эту тему.

Ruterk

3. Эксплуатация

Итак, жёсткий диск установлен в компьютер, и наступает период эксплуатации. Чтобы это приятное состояние длилось как можно дольше и не доставляло проблем, следует обеспечить диску комфортные условия (всё как у людей :)). Сложное электронно-механическое устройство нуждается в качественном питании, охлаждении, механической защите и контроле состояния. Рассмотрим, как в этих аспектах ведёт себя типичный накопитель, и что может сделать пользователь для уменьшения факторов риска.

3.1. Питание
Проблема электропитания жестких дисков заметно обострилась в последнее время. Участились отказы и сбои ЖД по причине отклонений напряжения питания, пульсаций и помех в питающих цепях и прочих подобных факторов. К этому привели как недостатки массовых блоков питания (БП), отстающих от новых требований и нагрузок, так и повышенная чувствительность современных дисков к качеству питания.

3.1.1. Проблемы дисков
Капризность нынешних ЖД во многом закономерна. К этому привел неуклонный рост технических характеристик, прежде всего плотности записи и времени доступа. Ясно, например, что быстрое позиционирование головок (на дорожках шириной в долю микрона!) требует точно управляемого тока в отклоняющей катушке, и любые перепады напряжения мешают процессу.

Однако немалую роль играет и политика производителей. Во имя снижения себестоимости дисков они стремятся максимально удешевить плату электроники (вылизанную годами механику удешевлять практически некуда, притом, что её доля в общей стоимости изделия доходит до 90%).

С каждой новой линейкой размеры платы и число дискретных деталей уменьшаются:стабилизаторы и фильтры редуцируются, силовые цепи интегрируются с сигнальными в заказных микросхемах и т.п. Всё это снижает запас прочности ЖД, и нестабильное питание как минимум замедляет работу и вызывает сбои, а как максимум – выводит диск из строя. Рассмотрим это влияние более подробно.

Диски 3.5? питаются от линий 5 В (процессор и другие сигнальные цепи) и 12 В (шпиндельный двигатель и привод головок), причем основные проблемы, так уж сложилось, доставляет контур 12 В. Дело в том, что эта линия испытывает резкий всплеск нагрузки при включении диска, когда происходит раскрутка шпинделя и распарковка блока магнитных головок. Стартовый ток на 4-15 секунд достигает 1.2-2.5 А, при установившемся потреблении всего 0.4-0.9 А. Особенно прожорливы в этом плане диски Seagate Barracuda: так, в семействе 7200.11 пиковое потребление может достигать 3.0 А.

В типовых БП линия 12 В не имеет своей независимой системы стабилизации, и при росте нагрузки напряжение может «законно» снижаться на 0.5-0.6 В (стандартом ATX допускаются отклонения ±5% от номинала, что в данном случае составляет диапазон 11.4-12.6 В). Добавим к этому падение напряжения в соединительных проводах и разъемах, и получим на контактах ЖД до 11.3 В, при котором многие диски уже не могут нормально работать. Последние модели Seagate, например, требуют не менее 11.5 В.

Следящие схемы, во избежание падения головок на пластины, аварийно паркуют БМГ и останавливают шпиндель. Потребление по 12 В снижается, стабилизация в блоке питания восстанавливается, и при номинальных напряжениях диск выходит на новый цикл старта.
Внешне всё это выглядит, как щёлканье внутри системного блока с периодичностью 6-10 сек. Диск, естественно, не опознаётся: для этого он должен выйти на номинальные обороты, провести рекалибровку и считать паспорт из служебной зоны. В итоге весь компьютер неработоспособен.

Проблема обостряется при наличии нескольких жёстких дисков, что сегодня встречается сплошь и рядом (мощные рабочие станции, игровые и мультимедийные машины и т.п.). Иногда компьютер приходится оснащать блоком питания повышенной мощности, только чтобы справиться с пиками нагрузки при старте.

Для сравнения, в серверных конструкциях, где полдюжины накопителей SCSI с давних времен норма, практикуется поочередное раскручивание шпинделей: контроллер SCSI выдает дискам команды старта с интервалом несколько секунд. Это значительно снижает нагрузку на БП, хотя и замедляет инициализацию сервера.

Стандарты ATA и SATA подобной технологии изначально не предусматривали – ЖД стартовал и выходил в готовность сразу после подачи питания. Но жизнь поставила задачу, и за её решение взялись производители. Стали появляться контроллеры и диски SATA, обеспечивающие поочерёдную раскрутку (Staggered Spin Up) в качестве расширения стандарта.

Такой диск после включения питания входит в режим Stand-By (с остановленным двигателем), и ждет команды контроллера на раскрутку шпинделя. Контроллер же опрашивает диски поочередно, в соответствии с настройками своей микропрограммы. Тем самым опасность перегрузки БП устраняется почти незаметно для пользователя.
В одном аспекте защита электроники ЖД всё же улучшилась. Речь идет о защитных диодах (другое название – трансилы), установленных на входе цепей питания 5 и 12 В и реагирующих на перенапряжение. При бросках выше номинала на 15-20% (6 и 14 В соответственно) диод пробивается на землю до короткого замыкания, а от него срабатывает защита в блоке питания. В итоге весь компьютер обесточивается, что предотвращает более серьёзные разрушения. Защитные диоды первым применил в своих дисках Seagate, за ним последовали Samsung и Hitachi.

Если вы попали в такую ситуацию (с подключенным диском компьютер не включается, а без него работает нормально), то прозвоните цепи питания ЖД. Пробитый диод можно заменить или просто снять (в последнем случае вы лишаетесь последнего рубежа зашиты), после чего диск будет нормально работать. Однако случившийся инцидент – свидетельство перегрузки или низкого качества БП, и такой блок лучше сразу заменить.

3.1.2. Проблемы блоков питания
Основная нестабильность в линии 12 В связана со старением блока питания, точнее его фильтров и цепей стабилизации. Наименее стойки электролитические конденсаторы, которые от нагрева высыхают и теряют ёмкость. А у полупроводниковых элементов с возрастом ухудшаются характеристики и снижается общий запас прочности.

По мере деградации БП напряжение поднимается до 12.5-13.0 В, что в принципе не мешает работе ЖД, но вызывает повышенный нагрев микросхемы управления двигателем, вплоть до 100-120?. Её ресурс резко сокращается, и в неблагоприятных условиях (случайные броски напряжения, плохое охлаждение, повторный старт неостывшего диска и т.п.) чип выходит из строя, нередко с пиротехническими эффектами и выгоранием дорожек на плате. Все такие ситуации относятся к негарантийным, и владельцу остаётся лишь отдать диск в специализированный сервис для ремонта или восстановления данных.

Изношенный, умирающий «питальник» может натворить и более страшных дел. Бывает, что под конец стабилизация по 12 В полностью утрачивается, и БП выдает в агонии импульс амплитудой до 20-30 В. От такого броска моментально выгорает не только жесткий диск, но и почти вся начинка системного блока!

Линия 5 В подаётся на такие узлы ЖД как процессор и предусилитель-коммутатор головок, последний расположен внутри гермоблока. В неисправном БП напряжение может повышаться, отчего выходят из строя цепи питания коммутатора (он требует двухполярного источника +/-5 В, и отрицательный номинал вырабатывается специальной микросхемой, чувствительной к броскам). Такой диск при старте стучит головками, а затем останавливает шпиндель.

Чаще встречается пониженное напряжение 5 В – вследствие перегрузки БП, старения или просто плохих контактов. Это обычно не причиняет диску физических повреждений, но вызывает сбои в работе сигнальных цепей. Например, запись данных может происходить некорректно, и при последующем считывании появляются ложные дефекты: драйверу ОС возвращается код «ошибка контрольной суммы сектора», с неприятными последствиями вплоть до зависания компьютера.

Кроме того, некачественный или изношенный блок питания выдает 5 В со значительными пульсациями – они хорошо видны на осциллографе. Размах пульсаций достигает 0.1 В, что вдвое выше допустимого (1% от номинала по стандарту ATX). Эти помехи также не добавляют здоровья ЖД, вызывая перегрузку фильтров и сбои в работе бортового процессора.

Добавим, что от линии 5 В питаются порты USB, очень востребованные в наше время. Нехватка мощности БП, просадки и пульсации напряжения приводят к тому, что USB-устройства, в том числе популярные флэш-накопители, работают нестабильно (не опознаются, сбоят, теряют скорость), причем на разных портах их поведение может отличаться. В тяжелых случаях подключение флэшки приводит к спонтанной перезагрузке компьютера, и даже может физически повредить материнскую плату (чаще всего выгорает южный мост).

3.1.3. Выбор блока питания
Итак, приличный «питальник» достаточной мощности – необходимое условие надёжной работы ЖД. Как выбрать блок питания – отдельная тема, хорошо освещённая в Сети.
Хороший блок питания не может быть дешёвым. Вариант «корпус вместе с блоком питания за 25$» заведомо сомнителен: скорее всего, ни тот, ни другой компонент не будут отвечать необходимым требованиям, что бы ни было написано на этикетках. Схемотехника и конструкция типовых БП вполне устоялись, и их добросовестная реализация как раз и приводит к указанным параметрам цены и веса.

Все удешевлённые варианты – это плоды китайской «оптимизации»: ухудшения элементной базы, экономии цветного металла за счет радиаторов и обмоток, и замены фильтров специально обученными перемычками. Такой БП работает на честном слове, фактически в предельных режимах, и может выйти из строя в любой момент. Качество выдаваемых напряжений под нагрузкой и подавно не выдерживает критики.

Для типового компьютера подойдёт блок питания одной из известных и проверенных марок, мощностью 350-400 Вт. Хотя реальное потребление редко превышает 200 Вт, такой запас необходим для уменьшения пульсаций, а также на случай пиковых нагрузок и для компенсации процессов старения. В случае нестандартной конфигурации (два и более ЖД, мощная видеокарта и т.п.) требуется уже расчёт мощности БП. Удобны онлайновые калькуляторы, хотя по точности они весьма неравноценны. Кустарные поделки зачастую не знают современных комплектующих и склонны завышать оценки; из качественных программ рекомендуем http://www.extreme.outervision.com/psucalculatorlite.jsp

В отдельных случаях, для неответственных применений допустимо использовать блоки No name, но указанные на них «китайские» ватты надо сразу делить надвое. Согласно независимым тестам, подобный БП с номиналом 300 Вт выдерживает реальную нагрузку лишь 170-180 Вт, а по мере старения и того меньше. Таким образом, для устойчивой работы подойдут изделия с номиналом не менее 420-450 Вт.

Чтобы продлить жизнь своему блоку питания (и тем самым, жесткому диску), соблюдайте несложные правила профилактики. Это, в первую очередь, охлаждение: не давайте БП зарасти пылью, поставьте в системный блок дополнительный вытяжной вентилятор, обеспечьте достаточное пространство для воздухообмена. Не один «питальник» перегрелся и умер в тесном подстолье, заткнутый вплотную прилегающей стенкой. Сильный нагрев при нормальной вентиляции свидетельствует о перегрузке БП.

Следует позаботиться о питании самого блока питания. Ни один фильтр или схема защиты в БП не будет эффективно работать без действующего заземления в электросети, трёхконтактных электророзеток и трёхжильных кабелей. В условиях повышенных импульсных помех пригодится сетевой фильтр, а при нестабильном напряжении в сети – источник бесперебойного питания (UPS).

Большинство компьютеров рано или поздно модернизируются. При этом, как правило, энергопотребление растёт, поэтому следите за нагрузкой своего блока питания и при необходимости меняйте его на более мощный. Раз в год проверяйте рабочие напряжения, а в идеале и уровень пульсаций. Используйте для этого внешние измерительные приборы (датчики на материнской плате могут быть весьма неточны).

БП с трёхлетним стажем и заметным дрейфом от номиналов (более 3%) стоит уже выводить из эксплуатации, во всяком случае, на ответственных местах. Такой блок нельзя считать вполне надёжным. Впрочем, качественные изделия лучших марок (например, легендарные Delta Electronics) без проблем служат и по 4-5 лет.

Наконец, как любое импульсное устройство, блок питания не любит повторных включений сразу после отключения. Так поступать приходится, например, при зависании компьютера, если на корпусе отсутствует кнопка Reset. Выждите хотя бы 8-10, а лучше 20-30 секунд, прежде чем снова нажать на кнопку включения, иначе в БП не успеют остыть силовые элементы, и, что более важно, терморезистор в составе входного фильтра.
Именно эта деталь с отрицательным температурным коэффициентом призвана сглаживать стартовый бросок тока, вызванный зарядом конденсаторов и другими переходными процессами. В нагретом состоянии функция утрачивается, и диодные сборки или силовые ключи могут не выдержать очередного броска. Секундная поспешность тогда обернётся внеплановой заменой БП...

Ruterk

#1
3.2. Охлаждение

3.2.1. Опасности перегрева
Проблема нагрева, и соответственно, отвода тепла – одна из самых острых для современных жёстких дисков. Высокооборотный шпиндель, быстродействующий привод головок, и, наконец, плотный поток данных при операциях чтения и записи (до 100 Мбайт/с) требуют значительных затрат энергии. Типовые ЖД среднего класса (напомним, это форм-фактор 3.5?;, скорость вращения 7200 об./мин и интерфейс PATA/SATA) потребляют 4-9 Вт в режиме простоя, и 8-18 Вт при активной работе – пересылке данных и поиске. Стартовая мощность при раскрутке шпинделя значительно выше (16-35 Вт), но такой режим кратковременен, до 10-15 сек, и на общий нагрев диска практически не влияет.

Вся эта мощность (с точностью до 1%) в конечном счёте выделяется в виде тепла, чем и объясняется значительный нагрев ЖД. А ведь он очень вреден для механики, и особенно для читающих головок – ключевого элемента всей конструкции. Многослойные тонкоплёночные магнитные резисторы реагируют как на магнитное поле, так и на температуру.

При длительном перегреве головки деградируют, их отдача (степень изменения сопротивления в зависимости от намагниченности) уменьшается, и в конце концов микропрограмма при всех математических ухищрениях не может распознать, что именно записано на пластине – 0 или 1. Это касается не только и не столько пользовательских данных: критически важные для работы сервометки и модули служебной зоны точно так же считываются всё хуже. Диск начинает стучать, неуверенно опознаётся и в итоге полностью выходит из строя.

Поэтому производители отмеряют нынешним ЖД сравнительно узкий диапазон рабочих температур: нагрев корпуса, измеренный в центре крышки, не должен превышать 60?, при температуре окружающей среды +5...55?, реже 0...60?(к примеру, обычные микросхемы выдерживают до 125?, а в сложнейших процессорах Intel Core 2 Duo встроенная термозащита срабатывает при 81?). Причём верхняя граница нагрева означает лишь то, что диск не выйдет из строя сразу и какое-то время проработает в таком тепловом режиме. Однако его ресурс будет расходоваться катастрофически быстро, и о сколько-нибудь приемлемой надёжности говорить не приходится.

Скажем пару слов об измерении температуры ЖД. Внешние термодатчики (как на материнских платах) здесь не прижились, и обычно все пользуются данными SMART, доступными через многочисленные прикладные программы. Атрибут #194 TemperatureTemperature» имеется у всех дисков, он практически в реальном времени отражает нагрев системной головки (обычно нижней в банке). Ведь всякий магнитный резистор является еще и терморезистором, так что отдельный датчик излишен.

Впрочем, современные модели Western Digital уже обзавелись вторым сенсором, встроенным прямо в корпус банки (это потребовалось для более точного учета градиента температур). Его показания отражаются в новом атрибуте SMART #190 HDA Temperature. У WD есть ещё и своеобразная нормировка: приводится не само значение температуры, а результат его вычитания из условного числа 125. Например, значение атрибута 93 соответствует нагреву в 32?, а при 70 и меньше пора бить тревогу.

У дисков Seagate (в частности, популярных линеек 7200.9 и 7200.10) термоатрибутов тоже два, но они имеют другой смысл: #190 – это Airflow Temperature, а #194 – HDA Temperature, причем наиболее интересный первый атрибут выдается в нормировке 100?-значение (тем самым критический нагрев соответствует значению 45).

В силу аэродинамических эффектов, головка всегда нагревается сильнее, чем вся банка. В зависимости от конструкции ЖД, разница может достигать 5-15?. Поэтому температура по SMART часто не совпадает с нагревом верхней крышки, и это следует учитывать при оценке ситуации.

Практика показала, что устойчивее всего диски работают при температуре по SMART 35-40?, это соответствует крышке, слегка теплой на ощупь. Именно в таких условиях проводится на заводе первичная разметка пластин и формируются адаптивы, поэтому для механики и микропрограммы ЖД подобный нагрев особенно благоприятен. Магнитный слой ведёт себя наиболее стабильно, отдача головок максимальна, а рекалибровки и другие настройки в связи с дрейфом температур можно проводить реже.

В реальных условиях столь узкий интервал соблюдать сложно, да и необязательно: отказоустойчивость современных дисков практически не страдает, если диапазон рабочих температур расширить до 25-45?. Данных, легко достижимых цифр и следует придерживаться как границ эксплуатационной надёжности ЖД.

Плата электроники может нагреваться значительно сильнее, до 60? и выше, рука такое переносит с трудом. Однако микросхемы сравнительно устойчивы к таким температурам, а от банки плата всегда отделена пористой прокладкой, служащей электро- и теплоизолятором. Один из слоев металлизации на плате занимает почти всю её площадь, обеспечивая теплоотвод от нагруженных деталей и удовлетворительное пассивное охлаждение. Поэтому тепловой режим платы – это её внутреннее дело, мало влияющее на долговечность всего диска (конечно, при условии качественного питания и хотя бы минимальной конвекции).
Нагрев по SMART выше 45? крайне нежелателен: он осложняет функционирование механики ЖД (требуются лишние рекалибровки), повышает вероятность ошибок в данных, а главное – резко усиливает износ головок чтения. По некоторым данным, каждые добавочные 5? ускоряют их деградацию вдвое. Так что даже непродолжительный, но сильный перегрев (вызванный, например, пиковыми нагрузками, неисправным вентилятором или просто жаркой погодой) рискует ощутимо сократить жизнь диска, не говоря о страшном – аварии.

Пожалуй, наихудший исход – заклиненный шпиндель. Гидродинамические подшипники современных ЖД, при всех своих преимуществах (меньший шум и нагрев, способность гасить вибрации и т.п.) оказались склонны к заклиниванию в условиях повышенных температур. Видимо, погрешности в изготовлении перечёркивают теоретические достоинства конструкции. В некоторых горячих (и, заметим, популярных) семействах «клин» стал прямо-таки бедствием.
В этой связи стоит отслеживать худшее (worst) значение температурного атрибута SMART, которое показывает максимальный нагрев за всё время жизни диска. Если оно превышает 55?, то необходимо принять меры к охлаждению ЖД. Формально такой показатель можно расценить как нарушение правил эксплуатации, и даже отказать в гарантии. К счастью, наши сервисы к SMART не придираются.

Кроме того, ЖД массовых серий не рассчитаны на непрерывную работу. Из глубин фирменных спецификаций можно выудить рекомендуемый для них режим – 8*5, что означает пять дней в неделю по восемь часов в день (расписание типичного офиса). Иногда в документации фигурирует суммарная наработка 2400 часов в год. Ограничение вызвано именно недостаточной стойкостью дисков к длительному нагреву: износ механики и деградация головок существенно сокращают их ресурс.

В режиме пониженного энергопотребления (головки запаркованы, привод БМГ обесточен, шпиндель замедлен или остановлен) современные диски практически не греются, и их ресурс не расходуется. Вполне допустимо и даже предпочтительно в плане общей надёжности, если компьютеры по окончании рабочего дня не выключаются, а переводятся в дежурный режим с указанным состоянием ЖД. Тем более это справедливо для ноутбуков (но диски 2.5" засыпают и без дополнительной настройки, это заложено в их микропрограмму).

Накопители, относящиеся к корпоративному классу (Enterprise Storage), значительно более выносливы и допускают круглосуточную эксплуатацию (режим 24*7). Другими словами, не только сильный, но и продолжительный нагрев им не страшен. Этому способствует система термозащиты, сходная с троттлингом современных процессоров: при критической температуре (обычно 56?) микропрограмма принудительно снижает производительность ЖД, что не даёт ему перегреваться дальше. К примеру, Seagate Barracuda ES на 20 секунд переходит в тихий режим с замедленным на 40% позиционированием БМГ.

В новейших ES-дисках firmware заботится и о таких тонких моментах, как динамическое управление высотой полёта головок (набегающий воздух подогревается крошечным резистором), периодическое отряхивание головок записи от налипших магнитных частиц или компенсация вибрации от соседних ЖД (актуально для RAID-массивов и прочих многодисковых систем). При «некомфортном» перегреве или переохлаждении активируется режим проверки записи, когда диск вычитывает только что записанные данные, сравнивая их с оригиналом. Все эти технологии обеспечивают повышенную надёжность записи данных в условиях перепадов температуры. Свой вклад вносит и более строгий производственный контроль, начиная с подбора термостабильных компонентов и кончая выходным тестированием в термокамере.
Различие стоит иметь в виду пользователям, планирующим покупку диска: если предполагается высокая и длительная нагрузка, что не редкость ныне даже в домашних машинах, то можно присмотреться к корпоративным моделям. Повышенные затраты (ES-диски на 40-50% дороже) в данном случае окупятся надёжностью и большим ресурсом.
Не слишком благоприятно для ЖД и его переохлаждение, когда рабочая температура не превышает 25?. Это случается при пониженных температурах среды и/или слишком интенсивном обдуве. От холода, как ни парадоксально, страдает надёжность диска: как показало недавнее исследование Google, у таких накопителей растёт вероятность сбоев и снижается ресурс. Кроме того, в связи с замедленным позиционированием ухудшается производительность.

Если же воздух охлаждается почти до нуля (не редкость в плохо отапливаемых помещениях типа складов), то это уже небезопасно и диску, строго говоря, нужен прогрев перед работой. В противном случае он может не только не запуститься, но и повредиться при подаче питания.

3.2.2. Ограничения градиента
Здесь мы приходим к понятию градиента температур в пространстве и во времени, которое сильно влияет на устойчивую работу жесткого диска. Рассмотрим эту зависимость подробнее.

Под пространственным градиентом понимается распределение температур внутри банки ЖД. Его порождает несовпадение источников тепла и мест теплоотвода: так, двигатель всегда находится в нижней части банки, а охлаждается преимущественно крышка и боковые стенки. Играет роль трение пластин о воздух (линейная скорость краёв достигает 35 м/сек – как у автомобиля на трассе) и воздуха о банку, а также нагрев катушки привода БМГ. Всё это даёт сложную тепловую картину, особенно в многопластинных конструкциях.

Каждый кронштейн в БМГ и каждая пластина в пакете нагреваются по-своему, неизбежное терморасширение меняет геометрию деталей. При нынешних плотностях записи это приводит к тому, что головки висят над дорожками с несовпадающими номерами (так что традиционное понятие цилиндра фактически потеряло смысл). Разброс к тому же зависит от угла поворота БМГ и меняется во времени. В этих условиях не обойтись без качественно новой, адаптивной системы позиционирования.

Таковая реализована во всех современных дисках, и задача пользователя – не навредить, удержав пространственный градиент в допустимых рамках. Этому способствует грамотное размещение ЖД в системном блоке (рассмотрено в п. 2.2), а также адекватное пассивное и активное охлаждение. Коротко говоря, надо следить за тем, чтобы конвекция, теплопередача и теплообмен при обдуве затрагивали по возможности все грани корпуса диска.

ВременнОй градиент – это попросту скорость нагрева и охлаждения ЖД. Во избежание повреждений механики и срыва адаптивных механизмов (что как минимум приводит к сбоям, и даже может спровоцировать отказ), изменения температуры диска должны быть достаточно медленными. По спецификациям всех производителей, они не должны превышать 20? в час во включенном состоянии, и 30? в час в выключенном.

Практические следствия из этого ограничения в основном связаны с быстрым разогревом ЖД в начале работы. Действительно, если, как часто бывает, накопитель имел температуру окружающей среды 20?, а после включения за 20 минут нагрелся до 40?, то допустимый градиент превышен втрое. Подобная горячка сопровождается перегрузкой адаптивных систем диска, что явно не идёт ему на пользу.

Хуже того, от быстрых перепадов температур в магнитном слое пластин образуются микротрещины и дефекты. Накапливаясь, они перерастают в физические повреждения поверхности – те самые бэды, а отделяющиеся микрочастицы попадают в зазор головок и портят уже их. Понятно, что такой диск долго не проживёт...

Облегчить жизнь накопителю можно двумя путями – улучшить охлаждение либо снизить нагрузку в начале работы, устроив своеобразный прогрев. В качестве последнего могут служить любые рутинные действия (редактирование документов и т.п.), когда ЖД работает практически вхолостую и постепенно набирает рабочую температуру. Конечно, такой подход не всегда уместен, и наиболее действенной мерой остаётся правильный теплоотвод, резко замедляющий нагрев диска.

Ограничения на градиент в выключенном состоянии тоже приводятся не зря. Резкие перепады температур при перевозках и хранении ЖД, особенно сильное охлаждение, способствуют окислению мест пайки и последующему нарушению контактов. Эта проблема обострилась с внедрением бессвинцовых припоев, оказавшихся менее стойкими («виновница» - директива ROHS Евросоюза, поддержанная Китаем). Пострадавший диск выдаёт потемневшее лужение на плате; такой экземпляр лучше не покупать, а если уж куплен, то очистить контакты карандашной резинкой и спиртом.

Ruterk

#2
3.2.3. Варианты охлаждения
Основным методом охлаждения современных ЖД 3.5? остаётся принудительный обдув с помощью вентилятора. Другие варианты теплоотвода – пассивные радиаторы, тепловые трубки, жидкостные системы и др. – не получили распространения, хотя ряд фирм (в частности, Zalman и Scythe) в разное время предлагал подобные решения. Они были бесшумны, долговечны, но отличались громоздкостью и высокой ценой, что предопределило узкую нишу на рынке (сборка особо тихих компьютеров и т.п.).

Подбор кулера для дисков имеет свою специфику. Прежде всего, общее тепловыделение ЖД и особенно его плотность сравнительно малы, поэтому достаточно легкого ветерка, чтобы снять перегрев. Вспомним также, что оптимальная температура диска под нагрузкой составляет 35-40? (примерно на 10? выше окружающей среды) и что все его поверхности следует охлаждать равномерно.

В подобных условиях лучшим выбором станет тихоходный крупногабаритный вентилятор, дующий в торец корзины с ЖД, но не касающийся её во избежание вибраций. Именно так устроен обдув корзины в современных качественных корпусах. Вентилятор крепится к вырезу передней панели, а декоративная крышка снабжена воздухозаборниками. Вытяжка через заднюю панель, которая часто встречается в корпусах среднего класса, также достаточно эффективна (конечно, при должной герметизации остальных мест).

Практика показала, что 120-мм вентилятор способен охлаждать до пяти ЖД, так что нужды обычных пользователей покрываются полностью. Для одного-двух дисков обдув даже избыточен, так что в целях снижения шума можно уменьшить скорость вращения до 600-1000 об./мин. Не лишним будет защититься от вездесущей пыли, поставив воздушный фильтр из тонкого поролона.

Значительная часть тепла ЖД может рассеиваться на корзине, которая служит пассивным радиатором. Здесь важна толщина металла и плотный равномерный прижим боковин (качественные корпуса имеют преимущество, также хорошо себя зарекомендовало крепление ЖД шестью винтами). При эффективном теплоотводе всё шасси во время работы ощутимо нагревается. Если же диск крепится на салазках или через амортизирующие элементы (силиконовые, хуже резиновые втулки), то этот путь охлаждения практически блокируется, и вся надежда остаётся на обдув.

Ситуация осложняется, когда штатное гнездо под вентилятор отсутствует. Можно заняться моддингом, сменить корпус на более подходящий или переставить ЖД в более прохладное место. Неплохо себя зарекомендовало размещение в пятидюймовом отсеке: его габариты позволяют установить вентилятор среднего размера (40-60 мм), а крепящие диск скобы не препятствуют обдуву и конвекции. Советуем использовать готовый монтажный комплект – в продаже есть как простые, так и улучшенные модели (с виброшумоизоляцией, пассивными радиаторами, индикацией температуры).

Выпускаются также недорогие (5-10$) кулеры, крепящиеся прямо на корпус ЖД. Следует предостеречь от их использования: мало того, что высокооборотный вентилятор, или даже два, обдувает практически одну только плату, покрывая её при этом пылью растёт риск замыканий), так ещё диску передаются все вибрации крыльчатки. Особенно они возрастают через несколько месяцев эксплуатации, когда разбалтывается некачественный подшипник скольжения (других там и не ставят). В этом состоянии кулер приносит больше вреда, чем пользы и обязателен к замене.

В заключение напомним, что все обсуждение этого раздела касалось дисков для настольных компьютеров. Ноутбучные и серверные накопители имеют свою специфику, отражающуюся и на подходе к охлаждению.

Первые потребляют всего 0.4-0.9 Вт в покое и 2-3.2 Вт при активной работе, греются сравнительно слабо и не нуждаются в особых мерах. Максимум, что встречается в ноутбуках – П-образная пластина, привинченная к боковинам для лучшего теплоотвода. Для еще более миниатюрных дисков (типоразмеры 1.8?, 1.3?, 1? и даже 0.85?) нагрев и вовсе можно не учитывать: энергопотребление у них даже в пике не превышает одного ватта.

Вторые, напротив, очень горячи из-за высокооборотного шпинделя (чаще всего 15000 об./мин) и постоянной нагрузки, и для них обязателен активный обдув. Продуманная система охлаждения в серверах включает массивные салазки и корзины, раздельные воздуховоды, дублированные вентиляторы горячей замены и т.п. Благодаря этому серверные диски работают в стабильном тепловом режиме и служат заметно дольше бытовых сородичей.

3.2.4. Другие факторы среды
Функционирование жёсткого диска зависит не только от температуры. Существенное значение имеют и другие параметры среды (влажность, давление, чистота воздуха и т.п.), на которые пользователи, увы, редко обращают внимание. Соответствующие пункты спецификации задают лишь формальные границы работоспособности ЖД, в то время как эксплуатационная надёжность обеспечивается в более узких интервалах.

В первую очередь упомянем относительную влажность воздуха. Чем выше влажность, тем меньше оказывается температурная стойкость ЖД – это связано, в частности, с коррозионными процессами внутри негерметичной банки. Согласно исследованию Hitachi, нагрев дисков до 45? при влажности 70% приводит к той же интенсивности отказов, что и нагрев до 60? при влажности 40%, считающейся нормальной. Плохо сказываются и быстрые перепады влажности (свыше 30% в час).

Другими словами, высокая влажность значительно сужает температурный диапазон ЖД. В такой среде дискам вреден любой нагрев выше 40?, и требуется более тщательный подход к охлаждению. Часто необходим принудительный обдув, или, как минимум, мониторинг температуры ЖД. Это должны учитывать пользователи, находящиеся в условиях влажного климата и на море, а также работающие в помещениях с повышенной влажностью.
К счастью, острота проблемы обещает вскоре снизиться. Причиной тому здесь технология перпендикулярной записи, потребовавшая новых материалов и покрытий, в том числе из благородных металлов (рутений и др. платиноиды). Они практически не подвержены коррозии, что даёт надежду на стойкость к влаге дисков последнего поколения.

Порой встречаются полностью залитые ЖД (ноутбук попал в воду, настольный компьютер пострадал от протечки, сервер залили пеной при тушении пожара и т.п.). В таких случаях многое зависит от продолжительности воздействия и давления воды: корпус диска отнюдь не герметичен, и даже несколько капель, попавших внутрь банки, действуют после включения фатально. Обычный пользователь с аварийной ситуацией вряд ли справится, поэтому следует не пытаться высушить накопитель подручными средствами (фен и т.п.) и тем более не вскрывать гермоблок, а обратиться к специалистам. Спасти данные может лишь комплекс срочных работ, включая промывку и сушку электроники, чистку контактов, а при необходимости – перестановку механики.

Второй по важности фактор воздушной среды – загрязнённость, в первую очередь содержание взвешенных частиц. Наличие в банке ЖД барометрического отверстия (breath hole), отвечающего за выравнивание давления, означает, что туда может подсасываться забортный воздух. Он, конечно, проходит очистку, однако встроенный фильтр имеет ограниченную ёмкость и к тому же пропускает мельчайшие частицы (например, табачный дым).

В сильно запылённой или накуренной атмосфере долговечность диска оказывается под вопросом: рано или поздно загрязнения попадут на пластины, и тогда жди беды. Ведь в современных ЖД головка летит на высоте всего 8-15 нм, и частицы дыма (характерный размер 20-60 нм) представляют для неё серьёзное препятствие. А столкновение с более крупными пылинками и вовсе фатально.

Сказанное, разумеется, не означает, что накопитель придёт в негодность от первой же выкуренной рядом сигареты – дым худо-бедно фильтруется на 99.5%, да и воздухообмен в банке крайне мал. Однако постоянная эксплуатация в накуренном помещении (где, как говорится, хоть топор вешай) достоверно снижает наработку на отказ.

В этом аспекте более уязвимы диски 2.5? – из-за тонких фильтров и неблагоприятных условий эксплуатации. Так, наблюдался экземпляр, не выдержавший пыльной бури в саванне: владелец взял ноутбук в экспедицию, и пыль проникла сквозь все уплотнения. Результатом были убитые головки и трудоёмкое восстановление данных.

Износ ЖД резко ускоряют коррозионно активные аэрозоли (морская соль, производственные выбросы). Они, а также другие агрессивные примеси в воздухе (сернистый газ, окись азота, испарения хлора из воды в бассейнах и др.) портят в первую очередь электронику и контакты, но могут через фильтр добраться и до механики.

Ионизаторы воздуха, как оказалось, тоже могут быть вредны для дисков. В данных приборах для генерации аэроионов используется коронный разряд высокого напряжения (6-20 кВ). При этом возникают сильные электростатические поля, и в неблагоприятных условиях (близкое расположение, отсутствие заземления, сухой воздух) электроника ЖД даёт сбои. Результат – искажение данных, зависания ОС и другие неприятности, исчезающие с отменой ионизации.
Наконец, атмосферное давление не должно сильно отклоняться от стандартных значений. В разреженном воздухе снижается высота полёта головок, отчего растёт риск повреждений и сбиваются многие автоподстройки (изменившаяся отдача путает карты микропрограмме). Диск теряет стабильность записи и чтения, сыпет ошибками и быстро выходит из строя.

Такое неоднократно случалось с компьютерами на высокогорных обсерваториях и с ноутбуками альпинистов и прочих экстремалов. Как показала практика, на высоте свыше 3000 м обычные ЖД не выдерживают и месяца. Для подобных условий выпускаются накопители в специальном исполнении, с полностью герметичной усиленной банкой.

3.3. Механические воздействия
Прецизионные устройства с подвижными частями, каковыми являются современные жёсткие диски, крайне чувствительны к любым внешним воздействиям – ударам, толчкам, вибрации. Производители творят чудеса, пытаясь ограничить или компенсировать их влияние (материалы, конструкция, функции микропрограммы, средства самодиагностики и т.п.), но полностью защитить ЖД эти меры не в состоянии. Радикальная амортизация, например упругая подвеска диска во внешнем корпусе, могла бы исправить дело, однако дороговизна и непрактичность не оставляет шансов подобным решениям.

Удары и вибрация – основные виды вредоносных механических воздействий. При этом удары поражают как выключенный, так и работающий ЖД, хотя и в разной степени, а вибрация – только работающий. Дело в том, что ускорения при обычно встречающейся вибрации недостаточны, чтобы физически повредить диск, и её основной эффект – функциональные нарушения (системы автоподстройки и т.п.).

3.3.1. Удары
Риск повреждающих ударов существует на всех этапах жизненного цикла накопителей. Как показала практика, чаще всего диски бьются при транспортировке и установке. Сильные удары, толчки, а особенно падения приводят механику в негодность несмотря на то, что в выключенном состоянии ЖД в 4-5 раз более стойки к ударам (в частности, головки выведены с пластин и находятся на парковочной рампе; эту полезную деталь вслед за IBM внедрило большинство производителей).

Именно поэтому механическая защита ЖД так подробно была описана в разделах 1.4 и 2.3. Повторим, что удары опаснее, чем кажется: незащищённый накопитель рискует серьёзно травмироваться при падении с высоты всего 10-15 см (речь идёт о совпадении неблагоприятных условий – жёсткий пол, неудачная точка контакта и т.п.).

После установки в системный блок диск, конечно, уже не так уязвим – сам корпус защищает его от сильных ударов. Однако расслабляться не следует: в рабочем состоянии механика гораздо чувствительнее, и ее способны повредить даже сравнительно небольшие ускорения, сравнимые с падением с высоты 3-4 см. В первую очередь страдает распаркованный БМГ. Летящие на высокой скорости головки могут коснуться пластин, а это бесследно не проходит.

Речь идёт не только о фатальных запилах поверхности или перегреве магнитных резисторов, моментально выводящем их из строя. Даже при лёгком контакте может сточиться и деформироваться слайдер (элемент подвеса головки, отвечающий за аэродинамику). В последнем случае диск работоспособности не теряет и внешне всё нормально. Однако скособоченная головка работает в нештатном режиме, и довольно быстро накопившиеся погрешности перерастают в нечитаемые данные.

Кроме того, в современных ЖД при скорости вращения 7200 об./мин и увеличившейся массе пластин становится очень заметен гироскопический эффект. При разворачивающем ударе мгновенная нагрузка на шпиндель многократно возрастает по сравнению с нерабочим состоянием, что повышает риск погнуть вал двигателя и разбить подшипник. Такие повреждения всегда тяжелы и часто фатальны.

Априори сложно оценить, какой эффект может иметь тот или иной удар по корпусу. Прежде всего, различается длительность и суммарная энергия ударов. Ясно, что резкий толчок опаснее сглаженного – выше развиваемые силы и ускорения. Однако провести водораздел не так-то просто.

В спецификациях ЖД длительность удара принимается равной 2 мс, что больше характерно для падений, причём на твёрдую поверхность. Диск, упавший с высоты всего 5 см, испытывает вертикальное ускорение в 50 g (оно уже критично для некоторых моделей). Горизонтальные воздействия обычно не столь кратковременны, но опасность им придает эффект застоя у эластичных ножек корпуса, когда начальная фаза смещения происходит с повышенным ускорением.

Ориентировочно можно считать, что для работающего диска вреден любой толчок, приводящий к смещению СБ хотя бы на 2-3 см. Реальные же последствия для ЖД весьма разнятся: это зависит от ударостойкости конкретной модели, жёсткости корпуса и амортизации корзины. Учесть всё это сложно, поэтому стоит подстраховаться и разместить компьютер наиболее устойчивым образом, а когда питание включено – избегать любых перемещений.

Вероятность «грохнуть» диск во многом зависит от расположения системного блока. На практике чаще страдают компьютеры, стоящие на полу – их самих и подключённые кабели задевают ногами и уборочными приспособлениями. При наличии неконтролируемых факторов риска (проходное место, дети и т.п.) можно даже прикрепить СБ к неподвижному предмету вроде трубы или ножки стола.

Наиболее опасно падение набок. В этом случае диск уязвим даже при выключенном питании, поскольку он испытывает мощный боковой удар, способный разбить подшипники и погнуть ось шпинделя. Работающий же накопитель в большинстве случаев фатально повреждается: головки резко чиркают по пластинам, выбитые частицы покрытия, попадая под головки, работают как абразив и сдирают соседние участки.

Процесс развивается лавинообразно, и всего за несколько секунд приводит устройство в полную негодность. Данные в прямом смысле слова стираются в порошок, оседая магнитной пылью на стенках и воздушном фильтре. Как горько шутят ремонтники, собрать их можно только пылесосом...

Отдельно стоит рассмотреть ударостойкость внешних накопителей , получающих всё большую популярность. Они выпускаются двух основных классов, исходя из типоразмеров ЖД 3.5? и 2.5?. Другие форм-факторы распространены значительно меньше: диски 1.8? необоснованно дороги, а микродрайвы 1? проиграли конкуренцию флэшкам и сходят со сцены.

Контейнеры для ноутбучных дисков – это зачастую простейшие тонкостенные коробочки, ударостойкости они почти не добавляют. Более надёжны, но и дОроги, модели с дополнительной амортизацией (обычно это резиновые прокладки вокруг накопителя, а также утолщения корпуса на торцах и защитный чехол). При нормальной эксплуатации эти мобильные устройства особых проблем не доставляют. Незначительные толчки и удары им не слишком опасны, даже полёты со стола порой сходят с рук (здесь, правда, больше заслуга современных дисков, оснащённых датчиком ускорения и успевающих запарковать головки уже в первые 20 см падения).

Естественно, испытания такого рода мы проводить не советуем. Также не стоит ставить в боксы 2.5? особо ёмкие или скоростные ЖД (200 Гб и выше, 7200 об./мин) - они заметно чувствительнее к ударам, да и с питанием от порта USB случаются проблемы. Оптимальным наполнением будет модель среднего объема (80-160 Гб), со скоростью вращения шпинделя 4200 или 5400 об./мин.

Контейнеры для дисков настольного формата значительно разнообразнее, что обусловлено растущим спектром применений (не только внешние накопители, но и медиацентры, серверы резервного копирования и т.п., вплоть до сетевых NAS-хранилищ и RAID-массивов). Они, как правило, выполнены из металла, имеют сетевое питание и широкий набор интерфейсов – от привычного USB до скоростных eSATA и Gigabit Ethernet. Охлаждение чаще пассивное, достигается плотным прижимом диска к шасси (крошечный вентилятор, если есть, играет вспомогательную роль).

Подобная конструкция затрудняет внутрикорпусную амортизацию, обычно дело ограничивается резиновыми ножками. ЖД в таком боксе почти столь же чувствителен к ударам, как и незащищённый накопитель, и требует сходных предосторожностей. В частности, при перевозке желательна дополнительная защита, а выбирать место для установки (стационарной!) надо наравне с системным блоком или даже тщательней. Малая масса контейнера делает его более чувствительным к случайным толчкам, а габариты порой способствуют опрокидыванию.

Ruterk

#3
3.3.2. Вибрации
Как уже было сказано, вибрации не угрожают надёжности жёсткого диска – скорее, они угрожают находящейся на нём информации. ЖД от вибрации редко страдает физически, а вот что-то неправильно прочитать или записать вполне может. Правда, рядовой пользователь подобные различия осознаёт с трудом: с его точки зрения, накопитель не выполняет своих прямых обязанностей. Чем же опасна вибрация?

Прежде всего, вибрация поражает систему позиционирования. Перемещение БМГ на нужную дорожку и удержание над ней в процессе записи и чтения данных – это сложный колебательный процесс, где одной из опорных частот служит частота вращения шпинделя, чаще всего 120 Гц. Внешние периодические возмущения (а это, собственно, и есть вибрация) изменяют спектральный состав этих колебаний и вносят разлад в ансамбль обратных связей.
Конечно, изощрённые алгоритмы firmware продолжают работать, математику не обманешь, но позиционирование значительно замедляется, а сам процесс записи данных может происходить с ошибками. Впоследствии при считывании эти места будут восприниматься как дефектные; возможны и другие проблемы, например, паразитные репозиционирования (головки как бы дёргаются).

Кроме того, от вибрации страдает производительность накопителя. Ведь даже линейное чтение требует частых перемещений на соседнюю дорожку, а всякое позиционирование затруднено. В результате обмен данными с ЖД замедляется в несколько раз и теряет стабильность, что плохо сказывается на работе операционной системы и всего компьютера.

Источники вибрации делятся на внешние и внутренние по отношению к системному блоку. Внешние источники – это звуковые колонки, особенно мощные низкочастотные (сабвуферы), а также силовые трансформаторы. Последние чаще встречаются не в быту, а на производстве; к этому добавляются разнообразные электродвигатели, насосы и прочее вибрирующее оборудование. Защита здесь одна – размещение СБ в безопасном месте, подальше от вредных воздействий. В лёгких случаях поможет вибропоглощающая прокладка, например резино-войлочные коврики в два и более слоя.

Внутренние источники вибрации, более распространённые и сложно нейтрализуемые – это вентиляторы; системный динамик (PC Speaker); оптические приводы CD/DVD; другие жёсткие диски. Рассмотрим эти угрозы по порядку.

Вентиляторы причиняют вред ЖД только при неудачной конструкции корпуса или ошибочном монтаже, когда когда отсутствует механическая развязка и вибрации крыльчатки передаются на дисковую корзину. К этому часто приводят самодельные доработки старых или дешёвых корпусов, а также попытки индивидуального охлаждения ЖД. В современном СБ общее число вентиляторов доходит до шести-семи, но их продуманное размещение, качественные подшипники с большим ресурсом и эластичные крепления сводят вибрации на нет.

Системный динамик в большинстве современных компьютеров распаян прямо на материнской плате, он весьма компактен и заметного влияния не оказывает. Однако в старых корпусах ещё встречаются громкоговорители традиционной конструкции, которые крепятся к передней стенке, а иногда и к днищу дисковой корзины без всякого демпфирования. В этом случае их звуковые вибрации легко достигают ЖД, что как минимум нежелательно. Такой динамик лучше демонтировать или хотя бы отключить.

Оптические приводы, а также флоппи-дисковод, могут порождать сильные вибрации, когда в них попадают носители низкого качества. Особенно это относится к высокоскоростным приводам CD-ROM и болванкам no name, которые зачастую бывают несбалансированы. Пытаясь прочитать такой CD на разных скоростях, привод многократно разгоняется и замедляется, а возникающие при этом вибрации передаются на корзину и доходят до ЖД. Чтобы ослабить это вредное влияние, в хороших корпусах корзины для оптических приводов и жёстких дисков разделены и механически развязаны.

Наиболее сложный случай – соседство нескольких ЖД в одной корзине. При активной работе они мешают друг другу, особенно в моменты позиционирования, а слегка различающаяся частота вращения шпинделей вызывает биения и резонансы. Результат – неприятный гул и дребезг в различных частях корпуса, снижение производительности дисковой подсистемы и рост числа сбоев.

Подобная ситуация стала часто встречаться, поэтому в ряде современных корпусов сделаны две раздельные корзины для ЖД. Например, основная корзина находится, как обычно, в средней части корпуса, а на днище есть дополнительное посадочное место (хотя бы крепёжные ушки). Его преимущества – полная виброразвязка, устойчивость и хорошее охлаждение диска. Существуют и такие конструкции, где посадочные места размещены перпендикулярно друг другу.

При другом подходе все ЖД монтируются через демпфирующие элементы – втулки, прокладки, салазки и т.п.(они должны быть предусмотрены конструкцией корзины). Неплохо себя зарекомендовал и самодельный амортизирующий подвес из четырёх полосок твёрдой резины. Эти практичные решения позволяют свести на нет взаимное влияние дисков; надо только не забывать про слабый теплоотвод на корзину и принять меры к обдуву.

Заключение
Мы рассмотрели весь жизненный цикл жёстких дисков и выяснили, какие опасности и угрозы подстерегают на разных этапах это чудо современных технологий. ЖД могут быть вполне надёжны, если осознанно подбирать их под имеющиеся задачи, а также правильно распределять затраты – скажем, экономия на блоке питания скорее всего выйдет боком. Аккуратная установка, грамотная эксплуатация и регулярный контроль состояния дисков (он остался за рамками статьи) обеспечат им долгую жизнь и сведут к минимуму возможные неприятности.

Увы, ничто не вечно, и при всех предосторожностях диски порой выходят из строя. На этот случай надо иметь резервную копию ценных данных, благо технологий бэкапа сейчас хватает на любой вкус и кошелёк – от клонирования разделов на DVD до выгрузки файлов в Интернет-хранилище. Внешние накопители и те получили аппаратную функцию копирования: достаточно нажать кнопку на корпусе, чтобы процесс пошёл. При таких удобствах даже неопытные пользователи смогут сохранить свою «инфу» без лишних проблем.

С описанными мерами потенциальная ненадёжность ЖД нивелируется, а их роль как главных накопителей информационной эпохи ещё более возрастает. Теоретические пределы плотности записи и скорости обмена на порядок больше нынешних цифр, так что отрасли есть куда расти. Планируется, что к 2013 году 2.5? накопители достигнут ёмкости 4 Тбайт, а настольные диски доберутся до 10 Тбайт; в более далёких прогнозах фигурирует цифра 50 Тбайт.

Активно развиваются и конкурирующие технологии (твердотельные, оптические и другие). Однако революции в хранении данных пока не предвидится: накопители SSD на флэш-памяти претендуют лишь на некоторые сегменты рынка (в первую очередь из сферы мобильных применений), а прочим разработкам до массового внедрения ещё далеко. Альтернативные принципы записи остаются лабораторной диковиной, изредка воплощаясь в дорогие нишевые продукты. Забвение жёстким дискам ещё долго не грозит...


Версия от 08.10.2008
Илья Зайдель, binform@list.ru
R.LAB восстановление жесткого диска.
http://rlab.ru/